

Panasonic

44011

ANALOG SMOKE DETECTOR WITH ISOLATOR

Fire alarm solutions
technical description

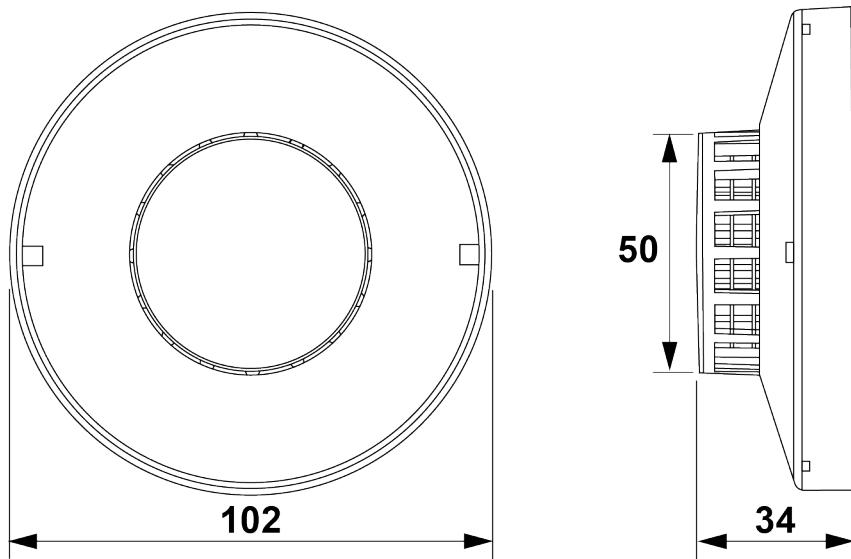
Table of Contents

1. INTRODUCTION	3
2. ABBREVIATIONS	4
3. GENERAL DESCRIPTION	5
3.1. LED	5
3.1.1. ADDRESS SETTING CHECK	6
3.2. IR LED	6
3.3. SHORT CIRCUIT ISOLATOR	7
4. FIRE ALARM	8
4.1. FIRE JUDGEMENT	8
4.1.1. ALARM THRESHOLD LEVELS	8
4.1.2. ALARM DELAY TIME	8
4.2. LEARNING FUNCTION	10
4.2.1. AREA ALARM ALGORITHMS	10
4.2.2. WITHOUT LEARNING FUNCTION	10
4.2.3. ANALOG DATA OUTPUT	10
4.3. SENSITIVITY COMPENSATION	11
4.3.1. SERVICE SIGNAL	11
4.4. SELF DIAGNOSIS OF INTERNAL DEVICES	11
4.5. TEST MODE	11
5. FUNCTION	12
5.1. LIFETIME LIMIT SERVICE SIGNAL	12
6. SET THE COM LOOP ADDRESS	13
6.1. AUTO ADDRESSING	13
6.2. MANUAL ADDRESSING	13
7. SET THE MODE	13
8. MOUNTING	14
8.1. LOCKING SCREW	14
9. INSTALLATION AND WIRING	15
10. TECHNICAL DATA	16
11. APPROVALS	17

1. INTRODUCTION

This document describes the Analog smoke detector with isolator, type number 4401I.

The document contains information about the product and instructions on how to mount and connect it


2. ABBREVIATIONS

CCF	Contamination Compensation Factor	
CIE	Control and indicating equipment	= control unit
IR	Infrared	
LED	Light Emitting Diode	

3. GENERAL DESCRIPTION

The Analog smoke detector with isolator has low profile housing. The latest IC technology will secure the highest reliability possible. The 4401I smoke detector is not backwards compatible with older detector types. Only **Advanced mode** is supported.

The unit is intended for indoor use and in dry premises.

(Measure in mm)

3.1. LED

The detector has two red LEDs that are activated (flashing) when the detector is in fire alarm state.

The red LEDs can also be activated via function 'Toggle LED'. For more information, see Planning instructions for the system, version 2.4.x or later.

The detector also has a green LED, which has four possible patterns

- Off
- Flash (20 ms) - the detector is polled by the c.i.e.
- Flash (250 ms / 3s) - the detector is in test mode
- Flash (250 ms / 1s) - the short circuit relay is opened.

The green LED turns off when the detector gets command from the CIE to light up the red LEDs.

When the detector gets command to turn off the red LED (normal state) the green LED resumes its previous pattern.

3.1.1. ADDRESS SETTING CHECK

The red LEDs will be blinking every 3 seconds when the detector is powered and the COM Loop address is not set, that is as long as the address is "000".

3.2. IR LED

The smoke detection chamber consists of an IR LED and a photodiode. Reflection of the infrared light is used to detect smoke. The smoke enters the detection chamber through an insect filter and an optical labyrinth. This construction improves the smoke inflow and also causes steam to condense on the outer surface, to prevent nuisance alarms.

3.3. SHORT CIRCUIT ISOLATOR

The 4401I smoke detector has a built-in short circuit isolator that requires no separate COM loop address. Like any other short circuit isolator, it will be given an individual sequence number when programmed in EBLWin.

The isolators have to be connected consecutively regarding sequence number 00-127, in the COM loop's A-direction.

The built-in short circuit isolator will divide the COM loop into segments. A segment is the part of a loop between two isolators or between one isolator and the CIE. In case of a short circuit on a COM loop, only the affected segment will be disabled, all other loop units will continue to work normally.

DATA

Parameter	Symbol	Value
The maximum line voltage	V_{max}	30V DC
The nominal line voltage	V_{nom}	24V DC
The minimum line voltage	V_{min}	12V DC
The maximum rated continuous current with the switch closed	$I_{C\ max}$	350 mA
The maximum rated switching current on short circuit conditions	$I_{S\ max}$	2 A
The maximum leakage current with the switch open	$I_{L\ max}$	500 μ A
The maximum series impedance with the switch closed	$Z_{C\ max}$	90 m Ω
The maximum voltage at which the device isolates (i.e. close to open)	$V_{SO\ max}$	11V DC
The minimum voltage at which the device isolates (i.e. close to open)	$V_{SO\ min}$	5V DC
The maximum voltage at which the device will change from open to close.	-	N/A ¹⁾
The minimum voltage at which the device will change from open to close.	-	N/A ¹⁾

1) The device can change from open to close by commands from the control and indicating equipment only. This can be done at minimum to maximum line voltage, i.e. 12V DC – 30V DC.

For more information on short circuit isolators, see the Planning instructions for EBL128 or EBL512 G3 version 2.3.x or later.

4. FIRE ALARM

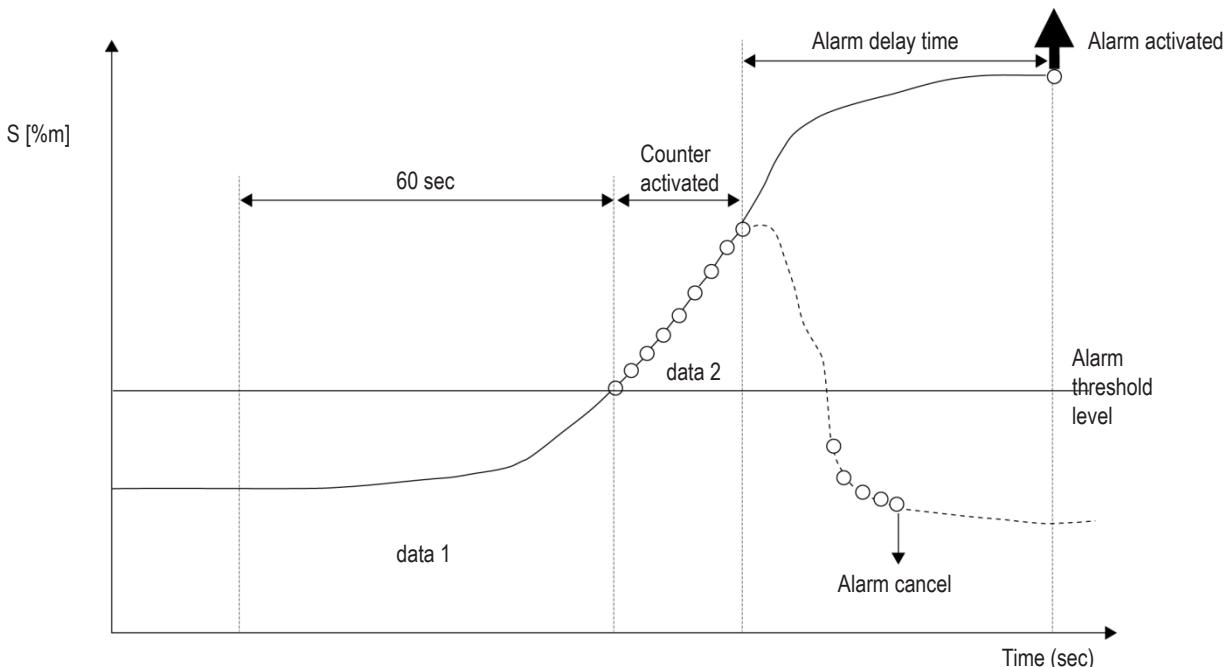
4.1. FIRE JUDGEMENT

Artificial Intelligence uses smoke sensing for the fire judgement, as well as variable sensitivity and time delay based on the smoke changes just before the alarm level is reached. This will secure real fire alarms and minimize the not wanted nuisance alarms, for example due to artificial smoke or oil mist.

4.1.1. ALARM THRESHOLD LEVELS

The 4401I smoke detector has the following fire alarm threshold levels:

Area alarm algorithm	S [%/m]
Normal (default)	3.5
Smoke / Steam (longer delay time)	3.5
Clean (higher sensitivity)	2.6


4.1.2. ALARM DELAY TIME

The alarm delay time is based on the cause of alarm and the smoke obscuration changes just before and after the alarm threshold level was passed. The delay time can be shortened up to 50 % (for example from 20 to 10 seconds), or the delay time can be extended in order to reduce nuisance alarms.

The detector has a counter that will start to count when the alarm threshold level is exceeded. The counter starts at 0 and cannot be negative. When the counter value reaches 9 the delay time starts.

When the smoke obscuration value **S** exceeds the alarm threshold level the counter value increases by 1 every second.

When **S** falls below the alarm threshold level the counter value decreases by 2 every second.

Maximum alarm delay time is 60 seconds.

Alarm delay time (Seconds)		
Area alarm algorithm	S	Data 1 (%/m)
Normal Clean	data 1 < 0.2	45
	0.2 ≤ data 1 < 0.3	39
	0.3 ≤ data 1 < 0.4	30
	0.4 ≤ data 1 < 1.3	18
	1.3 ≤ data 1	9
Smoke / Steam	data 1 < 0.2	45 + data2/2
	0.2 ≤ data 1 < 0.3	39 + data2/2
	0.3 ≤ data 1 < 0.4	30 + data2/2
	0.4 ≤ data 1 < 1.3	18 + data2/2
	1.3 ≤ data 1	9 + data2/2

data1 = the average smoke obscuration value for 60 seconds before the alarm threshold level was passed.

data2 = The sum of the difference between the smoke obscuration value and the alarm threshold level every second during the counter period.

4.2. LEARNING FUNCTION

Depending on the local occurrence of smoke where the detector is situated, each detector can after a learning period adapt a more appropriate alarm algorithm than the default (Normal).

A learning period contains of twenty 36h-periods ($20 \times 36h = 720h = 30$ days = one month).

When three (or more) of the 36h-periods, during the learning period, have exceeded the area alarm algorithm **level**, the area alarm algorithm will be adapted.

For the Clean area alarm algorithm to be adapted there must be no 36-periods that have exceeded the level during a full learning period. The clean area alarm algorithm will be changed back to the Normal area Alarm algorithm directly if any 36h period exceeds the level.

The minimum time for the area alarm algorithm to change back to Normal is one 36h-period.

4.2.1. AREA ALARM ALGORITHMS

Normal area is the default area alarm algorithm for each detector. There are two other **Area alarm algorithms** that can be adapted after the learning period:

- **Smoke – Steam area**, is depending on occurrence of smoke, **level 1** = $S [%/m] >$ half the fire alarm threshold level (S)
- **Clean area**, is the most sensitive condition, requiring a very clean and stable environment. The values for **level 1** must not be exceeded

4.2.2. WITHOUT LEARNING FUNCTION

If the area where the detector is placed is known, the learning function should be turned off and the detector should be programmed via EBLWin to its correct algorithm.

If manually set, also an alternative area alarm algorithm can be set that can be controlled via a time channel.

4.2.3. ANALOG DATA OUTPUT

The smoke obscuration value ($%/m$) can be shown via the CIE. A new value is calculated in the detector every second. The smoke obscuration value is an average value for the last four seconds.

4.3. SENSITIVITY COMPENSATION

In order to maintain a constant sensitivity regardless of the contamination of the detector, a Contamination Compensation Factor (CCF) is subtracted from the momentary smoke obscuration values before evaluated in the alarm algorithms.

The CCF is calculated during a 36 hours period as follows:

During 13 minutes, all the momentary smoke obscuration values are saved and an average value is calculated. The CCF will be changed directly if the average value is lower than the actual CCF, else no change.

This is valid for 18 hours. Then the CCF will be changed also if the average value is higher than the actual CCF. (It will normally be higher because of contamination.)

After another 18 hours the CCF will be changed if the average value is lower or higher than the actual CCF and it will be saved in the detector's non-volatile memory.

A new $18 + 18 = 36$ hours period starts with an average value calculation every 13th minute.

4.3.1. SERVICE SIGNAL

A service signal will be activated when the detectors CCF value is 2%/m and the detector has to be replaced.

4.4. SELF DIAGNOSIS OF INTERNAL DEVICES

The detectors perform an internal check of some vital functions and components (for example the IR-LED). A separate fault message will be shown in the CIE.

4.5. TEST MODE

For information about how to set the detector in test mode, see Planning Instructions or Operating Instructions.

It is possible to use test aerosol equipment for testing. For example "SOLO" or "Testifire".

5. FUNCTION

5.1. LIFETIME LIMIT SERVICE SIGNAL

In some countries it is necessary to change the smoke detectors after a certain number of years.

The control unit will set the install date for the detector automatically when it detects a new detector.

The new detector 4401I keeps track of its install date to support this function. Therefore, a service signal is given for a 4401I detector older than the following number of years:

- Spanish convention: 10 years
- Belgian convention: 6 years
- German convention: 8 years
- Other conventions: 25 years

When the service signal is activated, there will be a list of sensors with a descriptive message found in:

- EBL512 G3; go to Sensors activating service signal menu H4/U5
- EBLOne; go to Service signal menu > >
- EBL128; go to Sensors activating service signal menu H4/U4

Sensor, Zone ZZZ address AA is outdated
technical address xxxxxx
2022-12-03 09:09:15

Sensor, Zone XXX address AA needs service
technical address xxxxxx
2022-11-03 19:09:35

Menu

The message "...is outdated" is indicating an old detector.

The message "...needs service" is indicating a contaminated detector.

So there are different messages depending on if the detector is too old or is dirty.
If a detector fulfills both types of service signals, "dirty" has priority.

The install date can be read in menu 'Sensor values' and in EBLWin and EBLWeb.

- In EBL512 G3; go to Sensor values menu H4/U4
- In EBLOne; go to Sensor values menu > >
- In EBL128; go to Sensors values menu H4/U3

6. SET THE COM LOOP ADDRESS

6.1. AUTO ADDRESSING

The 4401I smoke detector supports automatic addressing via EBLWin.

For more information, see Planning instructions for the system, version 2.4.x or later.

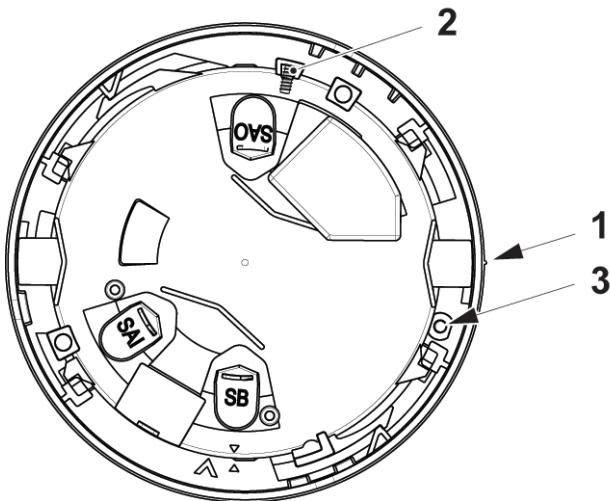
6.2. MANUAL ADDRESSING

If auto addressing is not used, there is a possibility to manually set the address.

Each COM loop unit has to have a unique COM loop address (001-253). The address is set with the Address Setting Tool (4414E and 4414), or use the auto addressing function.

If the address setting tool is used, the COM loop address and mode settings have to be done before the unit is connected to the COM loop.

7. SET THE MODE


Since the 4401I smoke detector is not backwards compatible with older detector types, only **Advanced mode** is supported.

8. MOUNTING

The detector is plugged in an analog base 4412F, 4412S, 4412J, or sounder base 4479.

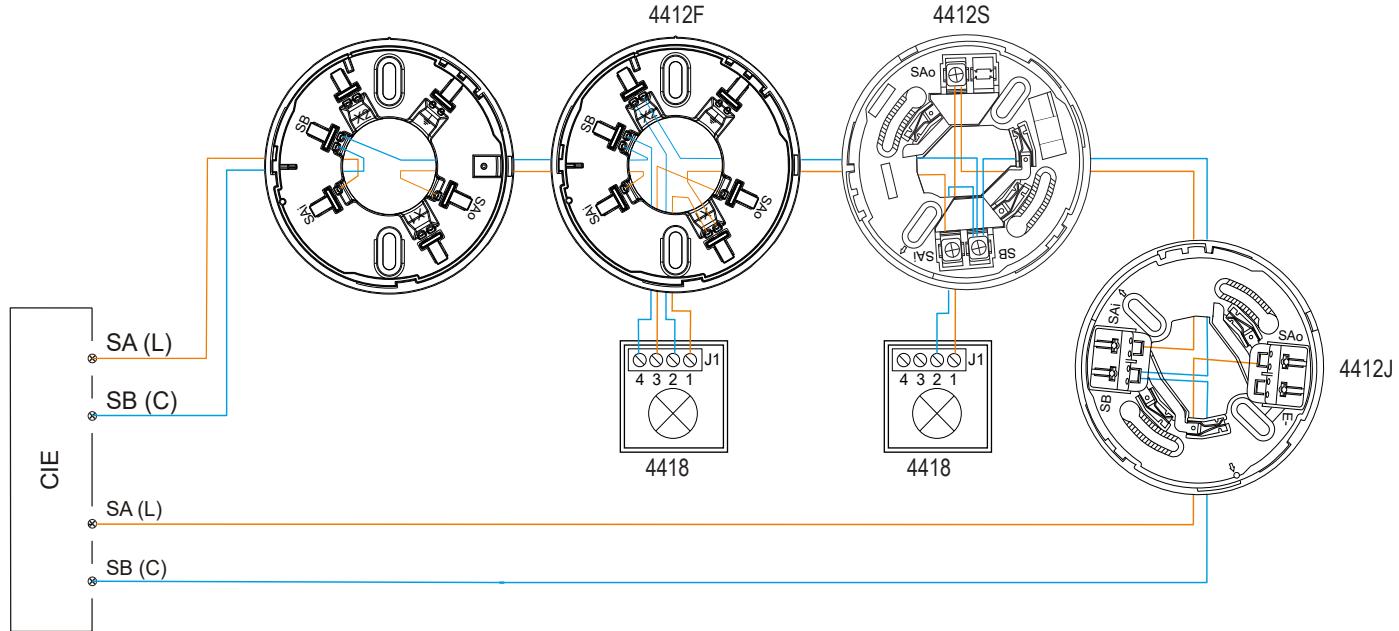
The 4401I smoke detector will not fit in bases 3312, 3312F, 3312FL, or sounder base 3379.

Place the detector in the base with the detector's "Mark" in the same position as the "Mark" on the base and turn the detector clockwise.

1. Mark
2. Position of locking screw (if used)
3. Locking screw hole (prepared for drilling through detector body)

8.1. LOCKING SCREW

The detector is prepared for mechanical locking with analog base 4412F, 4412S and 4412J.


Attach a hexagon socket screw (1.5 mm Hex key to be used). The locking screw hole (2.5-2.7 mm) has to be drilled.

The hexagon socket screw is not supplied. It must be ordered separately.

9. INSTALLATION AND WIRING

The detector is plugged in an analog base 4412F, 4412S, or 4412J. The COM Loop is connected to the analog base.

Screen wire termination is not provided.

4412F

4412S

4412J

4479

	4412F	4412S	4412J	4479
Wire size (Min)	Ø 0.6 mm (0.3 mm ²)	Ø 0.65 mm (0.33 mm ²)	Ø 0.6 mm (0.28 mm ²)	Ø 0.6 mm (0.3 mm ²)
Wire size (Max)	Ø 1.2 mm (1.13 mm ²)	Ø 1.6 mm (2 mm ²)	Ø 1.2 mm (1.0 mm ²)	Ø 1.385 mm (1.50 mm ²)

10. TECHNICAL DATA

All current consumptions are valid by nominal voltage and by 25 °C.

Voltage: Allowed Normal	12 – 30V DC 24V DC
Current: Quiescent Active (incl. internal LED)	0.3 mA (+0.025 if green polling LED is used) 1.3 mA
External LED	No
Address range	001-253
Address setting	Auto addressing / With address setting tool
Short circuit isolator	Built-in
Internal battery	No
Material	Polycarbonate Alloy
Ambient temperature: Operating Storage	-10 to +50 °C -20 to +70 °C
Ambient humidity	Maximum 96 % RH (Non condensing)
Ingress protection rating	IP41
Size: Ø x H	102 x 34 mm
Weight (including batteries):	75 g
Colour	White (10Y9/0.5, Munsell colour code)

11. APPROVALS

Applicable directive/ Approval	Applicable standards	Notified body
CPR	EN54-7 EN54-17	VdS No. 0786-CPR-21673
VdS	EN54-7 EN54-17 VdS2344 VdS2543	VdS No. G220004
EMC	EN61000-6-3 (Emission) EN50130-4 (Immunity)	Self declaration VdS
RoHS	EN IEC 63000	Self declaration

DOCUMENT NAME: TECHNICAL DESCRIPTION 4401I

DOCUMENT NUMBER: MEW02398 EN

DATE OF ISSUE: 2020-02-07

REV: 3

DATE OF REVISION: 2024-02-14

Panasonic Fire & Security Europe AB

Jungmansgatan 12

SE-211 11 Malmö

Sweden

Tel: +46 (0)40 697 70 00